Advertisements
Advertisements
Question
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solution
\[\text{ As }, \frac{\left| x + 2 \right| - x}{x} < 2\]
\[ \Rightarrow \frac{\left| x + 2 \right| - x}{x} - 2 < 0\]
\[ \Rightarrow \frac{\left| x + 2 \right| - x - 2x}{x} < 0\]
\[ \Rightarrow \frac{\left| x + 2 \right| - 3x}{x} < 0\]
\[\text{ Case I: When } x \geq - 2, \left| x + 2 \right| = \left( x + 2 \right), \]
\[\frac{\left( x + 2 \right) - 3x}{x} < 0\]
\[ \Rightarrow \frac{2 - 2x}{x} < 0\]
\[ \Rightarrow \frac{- 2\left( x - 1 \right)}{x} < 0\]
\[ \Rightarrow \frac{x - 1}{x} > 0\]
\[ \Rightarrow \left( x - 1 > 0 \text{ and } x > 0 \right) or \left( x - 1 < 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x > 1 \text{ and } x > 0 \right) \text{ or } \left( x < 1 \text{ and} x < 0 \right)\]
\[ \Rightarrow x > 1 \text{ or } x < 0\]
\[ \Rightarrow x \in [ - 2, 0) \cup \left( 1, \infty \right)\]
\[\text{ Case II }: \text{ When }x \leq - 2, \left| x + 2 \right| = - \left( x + 2 \right), \]
\[\frac{- \left( x + 2 \right) - 3x}{x} < 0\]
\[ \Rightarrow \frac{- x - 2 - 3x}{x} < 0\]
\[ \Rightarrow \frac{- 4x - 2}{x} < 0\]
\[ \Rightarrow \frac{- 2\left( 2x + 1 \right)}{x} < 0\]
\[ \Rightarrow \frac{2x + 1}{x} > 0\]
\[ \Rightarrow \left( 2x + 1 > 0 \text{ and } x > 0 \right) \text{ or } \left( 2x + 1 < 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x > \frac{- 1}{2} and x > 0 \right) \text{ or } \left( x < \frac{- 1}{2} \text{ and } x < 0 \right)\]
\[ \Rightarrow x > 0 or x < \frac{- 1}{2}\]
\[ \Rightarrow x \in ( - \infty , - 2] \cup \left( 0, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in [ - 2, 0) \cup \left( 1, \infty \right) \cup ( - \infty , - 2] \cup \left( 0, \infty \right)\]
\[ \therefore x \in \left( - \infty , 0 \right) \cup \left( 1, \infty \right)\]
APPEARS IN
RELATED QUESTIONS
Solve: 12x < 50, when x ∈ N
3x + 9 ≥ −x + 19
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{5x - 6}{x + 6} < 1\]
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve |3 – 4x| ≥ 9.
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
If x ≥ –3, then x + 5 ______ 2.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
x and b are real numbers. If b > 0 and |x| > b, then ______.
If |x − 1| > 5, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If p > 0 and q < 0, then p – q ______ p.