English

Solve | X − 1 | + | X − 2 | + | X − 3 | ≥ 6 - Mathematics

Advertisements
Advertisements

Question

Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]

Solution

\[\text{ We have }, \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6 . . . . . \left( i \right)\]

\[\text{ As }, \left| x - 1 \right| = \binom{x - 1, x \geq 1}{1 - x, x < 1}; \]

\[\left| x - 2 \right| = \binom{x - 2, x \geq 2}{2 - x, x < 2}\text{ and }\]

\[\left| x - 3 \right| = \binom{x - 3, x \geq 3}{3 - x, x < 3}\]

\[\text{ Now }, \]

\[\text{ Case I: When } x < 1, \]

\[1 - x + 2 - x + 3 - x \geq 6\]

\[ \Rightarrow 6 - 3x \geq 6\]

\[ \Rightarrow 3x \leq 0\]

\[ \Rightarrow x \leq 0\]

\[\text{ So }, x \in ( - \infty , 0]\]

\[\text{ Case II: When } 1 \leq x < 2, \]

\[x - 1 + 2 - x + 3 - x \geq 6\]

\[ \Rightarrow 4 - x \geq 6\]

\[ \Rightarrow x \leq 4 - 6\]

\[ \Rightarrow x \leq - 2\]

\[\text{ So }, x \in \phi\]

\[\text{ Case III : When } 2 \leq x < 3, \]

\[x - 1 + x - 2 + 3 - x \geq 6\]

\[ \Rightarrow x \geq 6\]

\[\text{ So }, x \in \phi\]

\[\text{ Case IV : When } x \geq 3, \]

\[x - 1 + x - 2 + x - 3 \geq 6\]

\[ \Rightarrow 3x - 6 \geq 6\]

\[ \Rightarrow 3x \geq 12\]

\[ \Rightarrow x \geq \frac{12}{3}\]

\[ \Rightarrow x \geq 4\]

\[\text{ So }, x \in [4, \infty )\]

\[\text{ So, from all the four cases, we get }\]

\[x \in ( - \infty , 0] \cup [4, \infty )\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.3 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.3 | Q 8 | Page 22

RELATED QUESTIONS

Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ N 


x + 5 > 4x − 10 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve 1 ≤ |x – 2| ≤ 3.


If –x ≤ –4, then 2x ______ 8.


If p > 0 and q < 0, then p + q ______ p.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?


A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added? 


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If |x − 1| > 5, then ______.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×