English

Solve Each of the Following System of Equations in R. 4x − 1 ≤ 0, 3 − 4x < 0 - Mathematics

Advertisements
Advertisements

Question

Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 

Solution

\[\text{ We have }, 4x - 1 \leq 0\]
\[ \Rightarrow 4x \leq 1\]
\[ \Rightarrow x \leq \frac{1}{4} (\text{ Dividing both the sides by } 4)\]
\[ \Rightarrow x \in ( - \infty , \frac{1}{4}] . . . (i)\]
\[\text{ Also }, 3 - 4x < 0\]
\[ \Rightarrow 0 > 3 - 4x\]
\[ \Rightarrow 4x > 3\]
\[ \Rightarrow x > \frac{3}{4} \text{ Dividing both sides by } 4\]
\[ \Rightarrow x \in \left( \frac{3}{4}, \infty \right) . . . (ii)\]
\[\text{ Hence, the solution of the given set of inequalities is the intersection of } (i) \text{ and } (ii) . \]
\[\text{ But }, \left( - \infty \frac{1}{4} \right) \cap \left( \frac{3}{4}, \infty \right) = \phi\]
\[\text{ Thus, the given set of inequations has no solution } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.2 | Q 11 | Page 15

RELATED QUESTIONS

Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ N 


3x − 7 > x + 1 


x + 5 > 4x − 10 


−(x − 3) + 4 < 5 − 2x


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve 1 ≤ |x – 2| ≤ 3.


Solve for x, |x + 1| + |x| > 3.


If `|x - 2|/(x - 2) ≥ 0`, then ______.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


If |x − 1| > 5, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If x > y and z < 0, then – xz ______ – yz.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×