Advertisements
Advertisements
Question
Solve: 4x − 2 < 8, when x ∈ Z
Solution
\[\text{ We have }, 4x - 2 < 8\]
\[ \Rightarrow 4x < 8 + 2 (\text{ Transposing - 2 to the RHS })\]
\[ \Rightarrow 4x < 10\]
\[ \Rightarrow x < \frac{10}{4} (\text{ Dividing both the sides by } 4)\]
\[ \Rightarrow x < \frac{5}{2}\]
\[ x \in Z\]
\[\text{ Then, the solution of the given inequation is } \left\{ . . . . . . . - 3, - 2, - 1, 0, 1, 2 \right\} . \]
APPEARS IN
RELATED QUESTIONS
Solve: 12x < 50, when x ∈ R
Solve: 12x < 50, when x ∈ Z
Solve: 12x < 50, when x ∈ N
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{x - 1}{x + 3} > 2\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If |x − 1| > 5, then ______.
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If x < –5 and x > 2, then x ∈ (– 5, 2)
If – 4x ≥ 12, then x ______ – 3.
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.