English

Mark the correct alternative in each of the following: If | x + 2 | ≤ 9, then - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then

Options

  • (a) x\[\in\](\[-\]7, 11)

  • (b) x\[\in\][\[-\]11, 7]

  • (c) x\[\in\](\[-\]\[\infty\]\[-\]7) \[\cup\](11, \[\infty\])

  • (d) x\[\in\](\[-\]\[\infty\]\[-\]7) \[\cup\][11,\[\infty\]

MCQ

Solution

\[\left| x + 2 \right| \leq 9\]
\[ \Rightarrow - 9 \leq x + 2 \leq 9\]
\[ \Rightarrow - 9 - 2 \leq x + 2 - 2 \leq 9 - 2\]
\[ \Rightarrow - 11 \leq x \leq 7\]
\[ \Rightarrow x \in \left[ - 11, 7 \right]\]

Hence, the correct option is (b).

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.8 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.8 | Q 7 | Page 32

RELATED QUESTIONS

Solve: 12x < 50, when x ∈ R 


Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when x ∈ Z 


Solve: −4x > 30, when x ∈ N 


3x − 7 > x + 1 


x + 5 > 4x − 10 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{3}{x - 2} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve `(x - 2)/(x + 5) > 2`.


Solve for x, |x + 1| + |x| > 3.


If x ≥ –3, then x + 5 ______ 2.


If –x ≤ –4, then 2x ______ 8.


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


If x < 5, then ______.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If x is a real number and |x| < 3, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×