English

Mark the Correct Alternative in Each of the Following: the Inequality Representing the Following Graph is - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in each of the following:
The inequality representing the following graph is 

Options

  • \[\left| x \right|\]\[<\]3

  • \[\left| x \right|\]\[\leq\]3

  • \[\left| x \right|\]\[>\]3

  • \[\left| x \right|\]\[\geq\] 

     

MCQ

Solution

As according to the graph,

\[\text{ x lies between } - 3 \text{ and } 3\]
\[ \Rightarrow - 3 \leq x \leq 3\]
\[ \Rightarrow \left| x \right| \leq 3\]

Hence, the correct option is (b).

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.8 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.8 | Q 8 | Page 32

RELATED QUESTIONS

Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when x ∈ Z 


3x + 9 ≥ −x + 19 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{3}{x - 2} < 1\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? 


Solve for x, |x + 1| + |x| > 3.


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If –3x + 17 < –13, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×