Advertisements
Advertisements
Question
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
Solution
We have, profit = Revenue – Cost
= (60x + 2000) – (20x + 4000)
= 40x – 2000
To earn some profit, 40x – 2000 > 0.
⇒ x > 50
Hence, the manufacturer must sell more than 50 items to realise some profit.
APPEARS IN
RELATED QUESTIONS
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ N
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{7x - 5}{8x + 3} > 4\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve 1 ≤ |x – 2| ≤ 3.
Solve for x, |x + 1| + |x| > 3.
If `1/(x - 2) < 0`, then x ______ 2.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If x > y and z < 0, then – xz ______ – yz.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.
If – 2x + 1 ≥ 9, then x ______ – 4.