English

2 X + 3 5 − 2 < 3 ( X − 2 ) 5 - Mathematics

Advertisements
Advertisements

Question

\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]

Solution

\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[ \Rightarrow \frac{2x + 3}{5} - \frac{3x - 6}{5} < 2 \left[ \text{ Transposing } \frac{3\left( x - 2 \right)}{5}to the LHS and - 2 to the RHS \right]\]
\[ \Rightarrow \frac{2x + 3 - 3x + 6}{5} < 2\]
\[ \Rightarrow 2x + 3 - 3x + 6 < 10 \left[ \text{ Multiplying both the sides by 5 } \right]\]
\[ \Rightarrow - x + 9 < 10\]
\[ \Rightarrow - x < 1\]
\[ \Rightarrow x > - 1 \left[ \text{ Multiplying both the sides by - 1 } \right]\]
\[\text{ Hence, the solution set of the given inequation is } \left( - 1, \infty \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.1 | Q 17 | Page 10

RELATED QUESTIONS

Solve: 12x < 50, when x ∈ R 


Solve: 12x < 50, when  x ∈ Z 


Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ N 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If |x + 3| ≥ 10, then ______.


If `1/(x - 2) < 0`, then x ______ 2.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


If x < 5, then ______.


If x is a real number and |x| < 3, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `2/(x + 2) > 0`, then x  ______ –2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×