Advertisements
Advertisements
Question
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
Solution
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[ \Rightarrow \frac{2x + 3}{5} - \frac{3x - 6}{5} < 2 \left[ \text{ Transposing } \frac{3\left( x - 2 \right)}{5}to the LHS and - 2 to the RHS \right]\]
\[ \Rightarrow \frac{2x + 3 - 3x + 6}{5} < 2\]
\[ \Rightarrow 2x + 3 - 3x + 6 < 10 \left[ \text{ Multiplying both the sides by 5 } \right]\]
\[ \Rightarrow - x + 9 < 10\]
\[ \Rightarrow - x < 1\]
\[ \Rightarrow x > - 1 \left[ \text{ Multiplying both the sides by - 1 } \right]\]
\[\text{ Hence, the solution set of the given inequation is } \left( - 1, \infty \right) .\]
APPEARS IN
RELATED QUESTIONS
Solve: 12x < 50, when x ∈ R
Solve: 12x < 50, when x ∈ Z
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ N
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
−(x − 3) + 4 < 5 − 2x
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If |x + 3| ≥ 10, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
If x < 5, then ______.
If x is a real number and |x| < 3, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.