Advertisements
Advertisements
Question
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
Solution
We have `(|x + 3| + x)/(x + 2) > 1`
⇒ `(|x + 3| + x)/(x + 2) - 1 > 0`
⇒ `(|x + 3| - 2)/(x + 2) > 0`
Now two cases arise:
Case I: When x + 3 ≥ 0, i.e., x ≥ –3
Then `(|x + 3| - 2)/(x + 2) > 0`
⇒ `(x + 3 - 2)/(x + 2) > 0`
⇒ `(x + 1)/(x + 2) > 0`
⇒ {(x + 1) > 0 and x + 2 > 0} or {x + 1 < 0 and x + 2 < 0}
⇒ {x > –1 and x > –2} or {x < –1 and x < –2}
⇒ x > –1 or x < –2
⇒ x ∈ (–1, `oo`) or x ∈ (`–oo`, –2)
⇒ x ∈ (–3, –2) ∪ ( –1, `oo`) [Since x ≥ –3] ....(1)
Case II: When x + 3 < 0 i.e., x < –3
`(|x + 3| - 2)/(x + 2) > 0`
⇒ `(-x - 3 - 2)/(x + 2) > 0`
⇒ `(-(x + 5))/(x + 2) > 0`
⇒ `(x + 5)/(x + 2) < 0`
⇒ (x + 5 < 0 and x + 2 > 0) or (x + 5 > 0 and x + 2 < 0)
⇒ (x < –5 and x > –2) or (x > –5 and x < –2)
It is not possible.
⇒ x ∈ (–5 , –2) ......(2)
Combining (I) and (II), the required solution is x ∈ (–5 , –2) ∪ (–1, `oo`).
APPEARS IN
RELATED QUESTIONS
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ N
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve for x, |x + 1| + |x| > 3.
If |x + 3| ≥ 10, then ______.
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If x is a real number and |x| < 3, then ______.
If |x + 2| ≤ 9, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.
If – 2x + 1 ≥ 9, then x ______ – 4.