English

Solve for x, |x+3|+xx+2>1. - Mathematics

Advertisements
Advertisements

Question

Solve for x, `(|x + 3| + x)/(x + 2) > 1`.

Sum

Solution

We have `(|x + 3| + x)/(x + 2) > 1`

⇒ `(|x + 3| + x)/(x + 2) - 1 > 0`

⇒ `(|x + 3| - 2)/(x + 2) > 0`

Now two cases arise:

Case I: When x + 3 ≥ 0, i.e., x ≥ –3

Then `(|x + 3| - 2)/(x + 2) > 0`

⇒ `(x + 3 - 2)/(x + 2) > 0`

⇒ `(x + 1)/(x + 2) > 0`

⇒ {(x + 1) > 0 and x + 2 > 0} or {x + 1 < 0 and x + 2 < 0}

⇒ {x > –1 and x > –2} or {x < –1 and x < –2}

⇒ x > –1 or x < –2

⇒ x ∈ (–1, `oo`) or x ∈ (`–oo`, –2)

⇒ x ∈ (–3, –2) ∪ ( –1, `oo`) [Since x ≥ –3]    ....(1)

Case II: When x + 3 < 0 i.e., x < –3

`(|x + 3| - 2)/(x + 2) > 0`

⇒ `(-x - 3 - 2)/(x + 2) > 0`

⇒ `(-(x + 5))/(x + 2) > 0`

⇒ `(x + 5)/(x + 2) < 0`

⇒ (x + 5 < 0 and x + 2 > 0) or (x + 5 > 0 and x + 2 < 0)

⇒ (x < –5 and x > –2) or (x > –5 and x < –2)

It is not possible.

⇒ x ∈ (–5 , –2)    ......(2)

Combining (I) and (II), the required solution is x ∈ (–5 , –2) ∪ (–1, `oo`).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Linear Inequalities - Solved Examples [Page 102]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 6 Linear Inequalities
Solved Examples | Q 7 | Page 102

RELATED QUESTIONS

Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ N 


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve for x, |x + 1| + |x| > 3.


If |x + 3| ≥ 10, then ______.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If x is a real number and |x| < 3, then ______.


If |x + 2| ≤ 9, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If x > y and z < 0, then – xz ______ – yz.


If p > 0 and q < 0, then p – q ______ p.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×