English

Solve: −4x > 30, When X ∈ N - Mathematics

Advertisements
Advertisements

Question

Solve: −4x > 30, when x ∈ N 

Solution

\[- 4x > 30\]
\[ \Rightarrow x < - \frac{30}{4} (\text{ Dividing both the sides by } - 4)\]
\[ \Rightarrow x < - \frac{15}{2}\] 

\[x \in N\]
\[\text{ Then, the solution of the given inequation is } \phi . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.1 | Q 2.3 | Page 10

RELATED QUESTIONS

Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ N 


x + 5 > 4x − 10 


3x + 9 ≥ −x + 19 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{3}{x - 2} < 1\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


If `|x - 2|/(x - 2) ≥ 0`, then ______.


If –x ≤ –4, then 2x ______ 8.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


If |x + 2| ≤ 9, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If – 4x ≥ 12, then x ______ – 3.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If `2/(x + 2) > 0`, then x  ______ –2.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×