Advertisements
Advertisements
Question
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solution
\[\text{ We have }, \]
\[\frac{\left| x - 2 \right|}{x - 2} > 0\]
\[\text{ As }, \left| x - 2 \right| = \binom{x - 2, x \geq 2}{2 - x, x < 2}\]
\[\text{ And } \frac{\left| x - 2 \right|}{x - 2} > 0 \text{ for } x > 2\]
\[\text{ So }, x > 2\]
\[ \therefore x \in \left( 2, \infty \right)\]
APPEARS IN
RELATED QUESTIONS
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ R
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
−(x − 3) + 4 < 5 − 2x
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If –3x + 17 < –13, then ______.
If x is a real number and |x| < 3, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If x > – 5, then 4x ______ –20.
If p > 0 and q < 0, then p – q ______ p.