English

2x + 6 ≥ 0, 4x − 7 < 0 - Mathematics

Advertisements
Advertisements

Question

2x + 6 ≥ 0, 4x − 7 < 0 

Solution

\[\text{ We have }, 2x + 6 \geq 0\]

\[ \Rightarrow 2x \geqslant - 6\]

\[ \Rightarrow x \geqslant - 3\]

\[ \Rightarrow x \in [ - 3, \infty ) . . . \left( i \right)\]

\[\text{ Also }, 4x - 7 < 0\]

\[ \Rightarrow 4x < 7\]

\[ \Rightarrow x < \frac{7}{4}\]

\[ \Rightarrow x \in \left( - \infty , \frac{7}{4} \right) . . . \left( ii \right)\]

\[\text{ Thus, the solution of the given inequations is the intersection of } \left( i \right) \text{ and } \left( ii \right) . \]

\[[ - 3, \infty ) \cap \left( - \infty \frac{7}{4} \right) = [ - 3, \frac{7}{4})\]

\[\text{ Thus, the solution of the given inequations is } [ - 3, \frac{7}{4}) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.2 | Q 4 | Page 15

RELATED QUESTIONS

Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when x ∈ Z 


Solve: −4x > 30, when x ∈ N 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{1}{x - 1} \leq 2\]


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Solve  \[\left| 3 - 4x \right| \geq 9\]


If x ≥ –3, then x + 5 ______ 2.


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?


If x is a real number and |x| < 3, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x < –5 and x > 2, then x ∈ (– 5, 2)


If – 4x ≥ 12, then x ______ – 3.


If x > – 5, then 4x ______ –20.


If x > y and z < 0, then – xz ______ – yz.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×