मराठी

2x + 6 ≥ 0, 4x − 7 < 0 - Mathematics

Advertisements
Advertisements

प्रश्न

2x + 6 ≥ 0, 4x − 7 < 0 

उत्तर

\[\text{ We have }, 2x + 6 \geq 0\]

\[ \Rightarrow 2x \geqslant - 6\]

\[ \Rightarrow x \geqslant - 3\]

\[ \Rightarrow x \in [ - 3, \infty ) . . . \left( i \right)\]

\[\text{ Also }, 4x - 7 < 0\]

\[ \Rightarrow 4x < 7\]

\[ \Rightarrow x < \frac{7}{4}\]

\[ \Rightarrow x \in \left( - \infty , \frac{7}{4} \right) . . . \left( ii \right)\]

\[\text{ Thus, the solution of the given inequations is the intersection of } \left( i \right) \text{ and } \left( ii \right) . \]

\[[ - 3, \infty ) \cap \left( - \infty \frac{7}{4} \right) = [ - 3, \frac{7}{4})\]

\[\text{ Thus, the solution of the given inequations is } [ - 3, \frac{7}{4}) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.2 | Q 4 | पृष्ठ १५

संबंधित प्रश्‍न

Solve: 12x < 50, when x ∈ R 


Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ R 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


−(x − 3) + 4 < 5 − 2x


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{x - 1}{x + 3} > 2\]


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Solve for x, |x + 1| + |x| > 3.


If a < b and c < 0, then `a/c` ______ `b/c`.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


If x < 5, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If `2/(x + 2) > 0`, then x  ______ –2.


If x > – 5, then 4x ______ –20.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×