Advertisements
Advertisements
प्रश्न
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
उत्तर
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[ \Rightarrow 6 - 2x \geq \frac{x}{5} + 4\]
\[ \Rightarrow 6 - 4 \geq \frac{x}{5} + 2x \left[ \text{ Transposing - 2x to the RHS and 4 to the LHS } \right]\]
\[ \Rightarrow 2 \geq \frac{11x}{5}\]
\[ \Rightarrow \frac{11x}{5} \leq 2\]
\[ \Rightarrow x \leq \frac{10}{11} \left[ \text{ Mltiplying both the sides by } \frac{5}{11} \right]\]
\[\text{ Thus, the solution set of the given inequation is } ( - \infty , \frac{10}{11}] .\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
3x − 7 > x + 1
x + 5 > 4x − 10
−(x − 3) + 4 < 5 − 2x
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{x - 1}{x + 3} > 2\]
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve `(x - 2)/(x + 5) > 2`.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If `1/(x - 2) < 0`, then x ______ 2.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If x < –5 and x > 2, then x ∈ (– 5, 2)
If x > y and z < 0, then – xz ______ – yz.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.
If – 2x + 1 ≥ 9, then x ______ – 4.