मराठी

Mark the Correct Alternative in Each of the Following: If | X − 2 | X − 2 ≥ Then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then

पर्याय

  •  x\[\in\][2, \[\infty\]

  • x\[\in\](2, \[\infty\])

  • x\[\in\](\[-\]\[\infty\] 2)

  •  x\[\in\](\[-\]\[\infty\]2]

MCQ

उत्तर

\[\frac{\left| x - 2 \right|}{x - 2} \geq 0\]
\[ \Rightarrow x - 2 > 0\]
\[ \Rightarrow x > 2\]
\[ \Rightarrow x \in \left( 2, \infty \right)\]

Hence, the correct option is (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.8 | Q 11 | पृष्ठ ३२

संबंधित प्रश्‍न

Solve: 12x < 50, when  x ∈ Z 


Solve: 12x < 50, when x ∈ N 


3x − 7 > x + 1 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Solve for x, |x + 1| + |x| > 3.


If –x ≤ –4, then 2x ______ 8.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×