Advertisements
Advertisements
प्रश्न
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
उत्तर
\[\text{ As }, \frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
\[ \Rightarrow \frac{1}{\left| x \right| - 3} - \frac{1}{2} < 0\]
\[ \Rightarrow \frac{2 - \left( \left| x \right| - 3 \right)}{2\left( \left| x \right| - 3 \right)} < 0\]
\[ \Rightarrow \frac{2 - \left| x \right| + 3}{\left| x \right| - 3} < 0\]
\[ \Rightarrow \frac{5 - \left| x \right|}{\left| x \right| - 3} < 0\]
\[\text{ Case I }: \text{ When } x \geq 0, \left| x \right| = x\]
\[\frac{5 - x}{x - 3} < 0\]
\[ \Rightarrow \left( 5 - x < 0 \text{ and } x - 3 > 0 \right) \text{ or } \left( 5 - x > 0 and x - 3 < 0 \right)\]
\[ \Rightarrow \left( x > 5 \text{ and } x > 3 \right) or \left( x < 5 \text{ and } x < 3 \right)\]
\[ \Rightarrow x > 5 \text{ and } x < 3\]
\[ \Rightarrow x \in [0, 3) \cup \left( 5, \infty \right)\]
\[\text{ Case II }: \text{ When } x \leq 0, \left| x \right| = - x, \]
\[\frac{5 + x}{- x - 3} < 0\]
\[ \Rightarrow \frac{x + 5}{x + 3} > 0\]
\[ \Rightarrow \left( x + 5 > 0 \text{ and } x + 3 > 0 \right) or \left( x + 5 < 0 \text{ and } x + 3 < 0 \right)\]
\[ \Rightarrow \left( x > - 5 \text{ and } x > - 3 \right) or \left( x < - 5 \text{ and } x < - 3 \right)\]
\[ \Rightarrow x > - 3 \text{ and } x < - 5\]
\[ \Rightarrow x \in \left( - \infty , - 5 \right) \cup ( - 3, 0]\]
\[\text{ So, from both the cases, we get }\]
\[x \in \left( - \infty , - 5 \right) \cup ( - 3, 0] \cup [0, 3) \cup \left( 5, \infty \right)\]
\[ \therefore x \in \left( - \infty , - 5 \right) \cup \left( - 3, 3 \right) \cup \left( 5, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: 4x − 2 < 8, when x ∈ Z
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
If `1/(x - 2) < 0`, then x ______ 2.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?
If –3x + 17 < –13, then ______.
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If x < –5 and x > 2, then x ∈ (– 5, 2)
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.
If – 2x + 1 ≥ 9, then x ______ – 4.