मराठी

Mark the Correct Alternative in Each of the Following: - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in

पर्याय

  • \[\left| x \right|\]\[<\]5

  • \[\left| x \right|\]\[>\]5

  • \[\left| x \right|\]\[\geq\]5

  • \[\left| x \right|\]\[\leq\]5 

     

MCQ

उत्तर

As according to the graph,

\[x \text{ lies between }( - \infty , - 5] \text{ and } [5, \infty )\]
\[ \Rightarrow x \geq 5 \text{ or } x \leq - 5\]
\[ \Rightarrow \left| x \right| \geq 5\]

Hence, the correct option is (c).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.8 | Q 9 | पृष्ठ ३२

संबंधित प्रश्‍न

Solve: 4x − 2 < 8, when x ∈ N 


3x − 7 > x + 1 


3x + 9 ≥ −x + 19 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


If x < 5, then ______.


If x is a real number and |x| < 3, then ______.


If |x + 2| ≤ 9, then ______.


If `2/(x + 2) > 0`, then x  ______ –2.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×