Advertisements
Advertisements
प्रश्न
If – 2x + 1 ≥ 9, then x ______ – 4.
उत्तर
If – 2x + 1 ≥ 9, then x ≤ – 4.
Explanation:
If – 2x + 1 ≥ 9 then
– 2x ≥ 9 – 1
⇒ – 2x ≥ 8
⇒ 2x ≤ – 8
⇒ x ≤ – 4
APPEARS IN
संबंधित प्रश्न
Solve: 4x − 2 < 8, when x ∈ N
x + 5 > 4x − 10
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve |3 – 4x| ≥ 9.
If –x ≤ –4, then 2x ______ 8.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If – 4x ≥ 12, then x ______ – 3.
If `(-3)/4 x ≤ – 3`, then x ______ 4.