मराठी

Solve |3 – 4x| ≥ 9. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve |3 – 4x| ≥ 9.

बेरीज

उत्तर

We have |3 – 4x| ≥ 9

⇒ 3 – 4x ≤ –9 or 3 – 4x ≥ 9   .....(Since |x| ≥ a ⇒ x ≤ –a or x ≥ a)

⇒ –4x ≤ –12 or –4x ≥ 6

⇒ x ≥ 3 or x ≤ `(-3)/2`   .....(Dividing both sides by –4)

⇒ x ∈ (`-oo, (-3)/2`] ∪ [`3, oo`)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Linear Inequalities - Solved Examples [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 6 Linear Inequalities
Solved Examples | Q 3 | पृष्ठ १०१

संबंधित प्रश्‍न

Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ R 


3x + 9 ≥ −x + 19 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


−(x − 3) + 4 < 5 − 2x


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{5x - 6}{x + 6} < 1\]


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve `(x - 2)/(x + 5) > 2`.


Solve 1 ≤ |x – 2| ≤ 3.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


If `|x - 2|/(x - 2) ≥ 0`, then ______.


If `1/(x - 2) < 0`, then x ______ 2.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


If –3x + 17 < –13, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×