मराठी

Solve | X + 1 | + | X | > 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 

उत्तर

\[\text{ We have }, \left| x + 1 \right| + \left| x \right| > 3\]

\[\text{ As }, \left| x + 1 \right| = \binom{\left( x + 1 \right), x \geq - 1}{ - \left( x + 1 \right), x < - 1}\]

\[\text{ and } \left| x \right| = \binom{x, x \geq 0}{ - x, x < 0}\]

\[\text{ Case I: When } x < - 1, \]

\[\left| x + 1 \right| + \left| x \right| > 3\]

\[ \Rightarrow - \left( x + 1 \right) - x > 3\]

\[ \Rightarrow - 2x - 1 > 3\]

\[ \Rightarrow - 2x > 4\]

\[ \Rightarrow x < \frac{4}{- 2}\]

\[ \Rightarrow x < - 2\]

\[\text{ So }, x \in \left( - \infty , - 2 \right)\]

\[\text{ Case II: When } - 1 \leq x < 0, \]

\[\left| x + 1 \right| + \left| x \right| > 3\]

\[ \Rightarrow \left( x + 1 \right) - x > 3\]

\[ \Rightarrow 1 > 3, \text{ which is not possible }\]

\[\text{ So }, x \in \phi\]

\[\text{ Case III: When x } \geq 0, \]

\[\left| x + 1 \right| + \left| x \right| > 3\]

\[ \Rightarrow \left( x + 1 \right) + x > 3\]

\[ \Rightarrow 2x + 1 > 3\]

\[ \Rightarrow 2x > 2\]

\[ \Rightarrow x > \frac{2}{2}\]

\[ \Rightarrow x > 1\]

\[\text{ So }, x \in \left( 1, \infty \right)\]

\[\text{ From all the cases, we get }\]

\[x \in \left( - \infty , - 2 \right) \cup \left( 1, \infty \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.3 | Q 11 | पृष्ठ २२

संबंधित प्रश्‍न

Solve: 12x < 50, when  x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ Z 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve 1 ≤ |x – 2| ≤ 3.


The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? 


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


If –x ≤ –4, then 2x ______ 8.


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


If x < 5, then ______.


If x is a real number and |x| < 3, then ______.


If |x + 2| ≤ 9, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x > – 5, then 4x ______ –20.


If p > 0 and q < 0, then p – q ______ p.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×