Advertisements
Advertisements
प्रश्न
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
उत्तर
\[\text{ As }, 1 \leq \left| x - 2 \right| \leq 3\]
\[ \Rightarrow \left| x - 2 \right| \geq 1 \text{ and } \left| x - 2 \right| \leq 3\]
\[ \Rightarrow \left( \left( x - 2 \right) \leq - 1 \text{ or } \left( x - 2 \right) \geq 1 \right) \text{ and } \left( - 3 \leq \left( x - 2 \right) \leq 3 \right) \left( As, \left| x \right| \geq a \Rightarrow x \leq - a or x \geq a; \text{ and } \left| x \right| \leq a \Rightarrow - a \leq x \leq a \right)\]
\[ \Rightarrow \left( x \leq 1 \text{ or } x \geq 3 \right) \text{ and } \left( - 3 + 2 \leq x \leq 3 + 2 \right)\]
\[ \Rightarrow \left( x \leq 1 or x \geq 3 \right) \text{ and } \left( - 1 \leq x \leq 5 \right)\]
\[ \Rightarrow x \in ( - \infty , 1] \cup [3, \infty ) \text{ and } x \in \left[ - 1, 5 \right]\]
\[ \therefore x \in \left[ - 1, 1 \right] \cup \left[ 3, 5 \right]\]
APPEARS IN
संबंधित प्रश्न
Solve: 4x − 2 < 8, when x ∈ R
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve |3 – 4x| ≥ 9.
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If –3x + 17 < –13, then ______.
If |x − 1| > 5, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If x > – 5, then 4x ______ –20.
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.