मराठी

Mark the correct alternative in each of the following: If | x + 3 | ≥ 10, then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then

पर्याय

  • x\[\in\](\[-\]13, 7]

  • x\[\in\]13, 7)

  • x\[\in\](\[-\]\[\infty\]\[-\]13) \[\cup\] (7, \[\infty\])

  •  x\[\in\](\[-\]\[\infty\]\[-\]13] \[\cup\] [7, \[\infty\])

MCQ

उत्तर

\[\left| x + 3 \right| \geq 10\]
\[ \Rightarrow x + 3 \geq 10 \text{ or } x + 3 \leq - 10\]
\[ \Rightarrow x \geq 10 - 3 \text{ or } x \leq - 10 - 3\]
\[ \Rightarrow x \geq 7 \text{ or } x \leq - 13\]
\[ \Rightarrow x \in ( - \infty , - 13] \cup [7, \infty )\]

Hence, the correct option is (d).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.8 | Q 12 | पृष्ठ ३२

संबंधित प्रश्‍न

Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when x ∈ Z 


Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ N 


3x − 7 > x + 1 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{7x - 5}{8x + 3} > 4\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Solve  \[\left| 3 - 4x \right| \geq 9\]


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve for x, |x + 1| + |x| > 3.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


If |x − 1| > 5, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x > – 5, then 4x ______ –20.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×