हिंदी

Mark the correct alternative in each of the following: If | x + 3 | ≥ 10, then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then

विकल्प

  • x\[\in\](\[-\]13, 7]

  • x\[\in\]13, 7)

  • x\[\in\](\[-\]\[\infty\]\[-\]13) \[\cup\] (7, \[\infty\])

  •  x\[\in\](\[-\]\[\infty\]\[-\]13] \[\cup\] [7, \[\infty\])

MCQ

उत्तर

\[\left| x + 3 \right| \geq 10\]
\[ \Rightarrow x + 3 \geq 10 \text{ or } x + 3 \leq - 10\]
\[ \Rightarrow x \geq 10 - 3 \text{ or } x \leq - 10 - 3\]
\[ \Rightarrow x \geq 7 \text{ or } x \leq - 13\]
\[ \Rightarrow x \in ( - \infty , - 13] \cup [7, \infty )\]

Hence, the correct option is (d).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.8 | Q 12 | पृष्ठ ३२

संबंधित प्रश्न

Solve: 4x − 2 < 8, when x ∈ Z 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve for x, |x + 1| + |x| > 3.


If `|x - 2|/(x - 2) ≥ 0`, then ______.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


If x < 5, then ______.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If |x − 1| > 5, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


If x < –5 and x > 2, then x ∈ (– 5, 2)


If – 4x ≥ 12, then x ______ – 3.


If x > y and z < 0, then – xz ______ – yz.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×