Advertisements
Advertisements
प्रश्न
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
If xy < 0
⇒ x < 0 and y > 0 or x > 0, y < 0
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ Z
3x + 9 ≥ −x + 19
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
−(x − 3) + 4 < 5 − 2x
\[\frac{1}{x - 1} \leq 2\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve `(x - 2)/(x + 5) > 2`.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
If –x ≤ –4, then 2x ______ 8.
If a < b and c < 0, then `a/c` ______ `b/c`.
If p > 0 and q < 0, then p + q ______ p.
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
If x < 5, then ______.
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If – 4x ≥ 12, then x ______ – 3.
If x > – 5, then 4x ______ –20.
If – 2x + 1 ≥ 9, then x ______ – 4.