Advertisements
Advertisements
प्रश्न
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
उत्तर
\[\text{ As }, \frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
\[ \Rightarrow \frac{1}{\left| x \right| - 3} - \frac{1}{2} \leq 0\]
\[ \Rightarrow \frac{2 - \left( \left| x \right| - 3 \right)}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{2 - \left| x \right| + 3}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{5 - \left| x \right|}{\left| x \right| - 3} \leq 0\]
\[\text{ Case I: When } x \geq 0, \left| x \right| = x, \]
\[\frac{5 - x}{x - 3} \leq 0\]
\[ \Rightarrow \left( 5 - x \leq 0 \text{ and } x - 3 > 0 \right) \text{ or } \left( 5 - x \geq 0 \text{ and } x - 3 < 0 \right)\]
\[ \Rightarrow \left( x \geq 5 \text{ and } x > 3 \right) \text{ or } \left( x \leq 5 \text{ and } x < 3 \right)\]
\[ \Rightarrow x \geq 5 or x < 3\]
\[ \Rightarrow x \in \left( 0, 3 \right) \cup [5, \infty )\]
\[\text{ Case II: When } x < 0, \left| x \right| = - x, \]
\[\frac{5 + x}{- x - 3} \leq 0\]
\[ \Rightarrow \frac{x + 5}{x + 3} \geq 0\]
\[ \Rightarrow \left( x + 5 > 0 \text{ and } x + 3 > 0 \right) or \left( x + 5 < 0 \text{ and } x + 3 < 0 \right)\]
\[ \Rightarrow \left( x > - 5 \text{ and } x > - 3 \right) \text{ or } \left( x < - 5 \text{ and } x < - 3 \right)\]
\[ \Rightarrow x > - 3 \text{ or } x < - 5\]
\[ \Rightarrow x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right) \cup \left( 0, 3 \right) \cup [5, \infty )\]
\[ \therefore x \in ( - \infty , - 5] \cup \left( - 3, 3 \right) \cup [5, \infty )\]
APPEARS IN
संबंधित प्रश्न
Solve: 4x − 2 < 8, when x ∈ R
3x − 7 > x + 1
x + 5 > 4x − 10
−(x − 3) + 4 < 5 − 2x
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
If x ≥ –3, then x + 5 ______ 2.
If –x ≤ –4, then 2x ______ 8.
If a < b and c < 0, then `a/c` ______ `b/c`.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If x is a real number and |x| < 3, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.
If x > – 5, then 4x ______ –20.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.