हिंदी

Solve 1 | X | − 3 ≤ 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]

उत्तर

\[\text{ As }, \frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
\[ \Rightarrow \frac{1}{\left| x \right| - 3} - \frac{1}{2} \leq 0\]
\[ \Rightarrow \frac{2 - \left( \left| x \right| - 3 \right)}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{2 - \left| x \right| + 3}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{5 - \left| x \right|}{\left| x \right| - 3} \leq 0\]
\[\text{ Case I: When } x \geq 0, \left| x \right| = x, \]
\[\frac{5 - x}{x - 3} \leq 0\]
\[ \Rightarrow \left( 5 - x \leq 0 \text{ and } x - 3 > 0 \right) \text{ or } \left( 5 - x \geq 0 \text{ and } x - 3 < 0 \right)\]
\[ \Rightarrow \left( x \geq 5 \text{ and } x > 3 \right) \text{ or } \left( x \leq 5 \text{ and } x < 3 \right)\]
\[ \Rightarrow x \geq 5 or x < 3\]
\[ \Rightarrow x \in \left( 0, 3 \right) \cup [5, \infty )\]
\[\text{ Case II: When } x < 0, \left| x \right| = - x, \]
\[\frac{5 + x}{- x - 3} \leq 0\]
\[ \Rightarrow \frac{x + 5}{x + 3} \geq 0\]
\[ \Rightarrow \left( x + 5 > 0 \text{ and } x + 3 > 0 \right) or \left( x + 5 < 0 \text{ and } x + 3 < 0 \right)\]
\[ \Rightarrow \left( x > - 5 \text{ and } x > - 3 \right) \text{ or } \left( x < - 5 \text{ and } x < - 3 \right)\]
\[ \Rightarrow x > - 3 \text{ or } x < - 5\]
\[ \Rightarrow x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right) \cup \left( 0, 3 \right) \cup [5, \infty )\]
\[ \therefore x \in ( - \infty , - 5] \cup \left( - 3, 3 \right) \cup [5, \infty )\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.3 | Q 10 | पृष्ठ २२

संबंधित प्रश्न

Solve: 4x − 2 < 8, when x ∈ R 


3x − 7 > x + 1 


x + 5 > 4x − 10 


−(x − 3) + 4 < 5 − 2x


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{5x + 8}{4 - x} < 2\]


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


If `|x - 2|/(x - 2) ≥ 0`, then ______.


If x ≥ –3, then x + 5 ______ 2.


If –x ≤ –4, then 2x ______ 8.


If a < b and c < 0, then `a/c` ______ `b/c`.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?


If x is a real number and |x| < 3, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `2/(x + 2) > 0`, then x  ______ –2.


If x > – 5, then 4x ______ –20.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×