हिंदी

Mark the Correct Alternative in Each of the Following: | X − 1 | > 5, Then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 

विकल्प

  • (a) x\[\in\](\[-\]4, 6)

  • (b) \[\in\][\[-\]4, 6]

  • (c) x\[\in\](\[-\]\[\infty\]\[-\]4) \[\cup\](6, \[\infty\]

     
     
  • (d) x\[\in\](\[-\]\[\infty\]\[-\]4) \[\cup\][6\[\infty\]. 

MCQ

उत्तर

\[\left| x - 1 \right| > 5\]
\[ \Rightarrow x - 1 > 5 \text{ or } x - 1 < - 5\]
\[ \Rightarrow x > 5 + 1 \text{ or } x < - 5 + 1\]
\[ \Rightarrow x > 6 \text{ or } x < - 4\]
\[ \Rightarrow x \in \left( - \infty , - 4 \right) \cup \left( 6, \infty \right)\]

Hence, the correct option is (c).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.8 | Q 6 | पृष्ठ ३२

संबंधित प्रश्न

Solve: −4x > 30, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ R 


x + 5 > 4x − 10 


3x + 9 ≥ −x + 19 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


−(x − 3) + 4 < 5 − 2x


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{4x + 3}{2x - 5} < 6\] 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve `(x - 2)/(x + 5) > 2`.


If |x + 3| ≥ 10, then ______.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?


In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?


If –3x + 17 < –13, then ______.


If |x + 2| ≤ 9, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×