Advertisements
Advertisements
प्रश्न
If `(-3)/4 x ≤ – 3`, then x ______ 4.
उत्तर
If `(-3)/4 x ≤ – 3`, then x ≥ 4.
Explanation:
If `(-3)/4 x ≤ – 3`
⇒ `x ≥ 3x xx 4/3`
⇒ x ≥ 4
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ Z
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ Z
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
If x < 5, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If |x + 2| > 5, then x ______ – 7 or x ______ 3.