हिंदी

Solve for x, the inequality given below. |x-2|-1|x-2|-2≤0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`

योग

उत्तर

Given that, `(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`

Put |x – 2| = y

∴ `(y - 1)/(y - 2) ≤ 0`

⇒ y – 1 > 0, y – 2 < 0

⇒ y > 1, y < 2

⇒ 1 < y < 2

⇒ 1 < |x – 2| < 2

⇒ 1 < |x – 2|, |x – 2| < 2

⇒ x – 2 < –1 or x – 2 > 1 and –2 < x – 2 < 2

⇒ x < 1 or x > 3 and –2 + 2 < x < 2 + 2

⇒ x < 1 or x > 3 and 0 < x < 4

Hence, the required solution is (0, 1) ∪ (3, 4).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Inequalities - Exercise [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 6 Linear Inequalities
Exercise | Q 2 | पृष्ठ १०७

संबंधित प्रश्न

Solve: 12x < 50, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ Z 


x + 5 > 4x − 10 


−(x − 3) + 4 < 5 − 2x


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{3}{x - 2} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


If |x + 3| ≥ 10, then ______.


If –x ≤ –4, then 2x ______ 8.


If a < b and c < 0, then `a/c` ______ `b/c`.


If p > 0 and q < 0, then p + q ______ p.


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


If x < 5, then ______.


If |x − 1| > 5, then ______.


If |x + 2| ≤ 9, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `2/(x + 2) > 0`, then x  ______ –2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×