Advertisements
Advertisements
प्रश्न
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
उत्तर
Given that, `(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Put |x – 2| = y
∴ `(y - 1)/(y - 2) ≤ 0`
⇒ y – 1 > 0, y – 2 < 0
⇒ y > 1, y < 2
⇒ 1 < y < 2
⇒ 1 < |x – 2| < 2
⇒ 1 < |x – 2|, |x – 2| < 2
⇒ x – 2 < –1 or x – 2 > 1 and –2 < x – 2 < 2
⇒ x < 1 or x > 3 and –2 + 2 < x < 2 + 2
⇒ x < 1 or x > 3 and 0 < x < 4
Hence, the required solution is (0, 1) ∪ (3, 4).
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ Z
x + 5 > 4x − 10
−(x − 3) + 4 < 5 − 2x
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If |x + 3| ≥ 10, then ______.
If –x ≤ –4, then 2x ______ 8.
If a < b and c < 0, then `a/c` ______ `b/c`.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
If x < 5, then ______.
If |x − 1| > 5, then ______.
If |x + 2| ≤ 9, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.