हिंदी

Solve the following system of inequalities: x2x+1≥14,6x4x-1<12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`

योग

उत्तर

From the first inequality, We have `x/(2x + 1) - 1/4 ≥ 0`

⇒ `(2x - 1)/(2x + 1) ≥ 0`

⇒ (2x – 1 ≥ 0 and 2x + 1 > 0) or (2x – 1 ≤ 0 and 2x + 1 < 0)   ......[Since 2x + 1 ≠ 0)

⇒ `(x ≥ 1/2 "and"  x > - 1/2)` or `(x < 1/2 "and"  x < - 1/2)`

⇒ `x ≥ 1/2` or `x < -1/2`

⇒ x ∈ `(-oo, - 1/2) ∪ [1/2, oo)`  ....(1)

From the second inequality, We have `(6x)/(4x - 1) - 1/2 < 0`

⇒ `(8x + 1)/(4x - 1) < 0`

⇒ (8x + 1 < 0 and  4x – 1 > 0) or (8x + 1 > 0 and 4x – 1 < 0)

⇒ `(x < - 1/8 "and" x > 1/4)` or `(x > 1/8 "and"  x < 1/4)`

⇒ x ∈ `(-1/8, 1/4)`  (Since the first is not possible)  ...(2)

Note that the common solution of (1) and (2) is null set. Hence, the given system of inequalities has no solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Inequalities - Solved Examples [पृष्ठ १०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 6 Linear Inequalities
Solved Examples | Q 8 | पृष्ठ १०३

संबंधित प्रश्न

Solve: 12x < 50, when x ∈ R 


Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ N 


3x + 9 ≥ −x + 19 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{3}{x - 2} < 1\]


\[\frac{4x + 3}{2x - 5} < 6\] 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve |3 – 4x| ≥ 9.


Solve 1 ≤ |x – 2| ≤ 3.


Solve for x, |x + 1| + |x| > 3.


If –x ≤ –4, then 2x ______ 8.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×