हिंदी

Solve Each of the Following System of Equations in R. 5x − 1 < 24, 5x + 1 > −24 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 

उत्तर

\[5x - 1 < 24\]

\[ \Rightarrow 5x < 24 + 1\]

\[ \Rightarrow x < 5 \]

\[ \Rightarrow x \in \left( - \infty , 5 \right) . . . (i)\]

\[\text{ Also }, 5x + 1 > - 24\]

\[ \Rightarrow 5x > - 24 - 1\]

\[ \Rightarrow x > - 5\]

\[ \Rightarrow x \in ( - 5, \infty ) . . . (ii)\]

\[\text{ Hence, the solution of the given set of inequalities is the intersection of } (i) \text{ and } (ii) . \]

\[\left( - \infty , 5 \right) \cap \left( - 5, \infty \right) = \left( - 5, 5 \right)\]

\[\text{ Thus, the solution of the given set of inequalities is } \left( - 5, 5 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.2 | Q 8 | पृष्ठ १५

संबंधित प्रश्न

Solve: 12x < 50, when x ∈ R 


Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when x ∈ N 


3x − 7 > x + 1 


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{3}{x - 2} < 1\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve 1 ≤ |x – 2| ≤ 3.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If |x + 3| ≥ 10, then ______.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If |x + 2| ≤ 9, then ______.


If – 4x ≥ 12, then x ______ – 3.


If x > y and z < 0, then – xz ______ – yz.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×