हिंदी

Solve ∣ ∣ ∣ 3 X − 4 2 ∣ ∣ ∣ ≤ 5 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 

उत्तर

\[\text{ As }, \left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
\[ \Rightarrow - \frac{5}{12} \leq \frac{3x - 4}{2} \leq \frac{5}{12} \left( \text{ As }, \left| x \right| \leq a \Rightarrow - a \leq x \leq a \right)\]
\[ \Rightarrow - \frac{5}{6} \leq 3x - 4 \leq \frac{5}{6}\]
\[ \Rightarrow - \frac{5}{6} + 4 \leq 3x \leq \frac{5}{6} + 4\]
\[ \Rightarrow \frac{- 5 + 24}{6} \leq 3x \leq \frac{5 + 24}{6}\]
\[ \Rightarrow \frac{19}{6} \leq 3x \leq \frac{29}{6}\]
\[ \Rightarrow \frac{19}{18} \leq x \leq \frac{29}{18}\]
\[ \therefore x \in \left[ \frac{19}{18}, \frac{29}{18} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.3 | Q 3 | पृष्ठ २२

संबंधित प्रश्न

Solve: 12x < 50, when  x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ N 


x + 5 > 4x − 10 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{1}{x - 1} \leq 2\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve `(x - 2)/(x + 5) > 2`.


The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? 


Solve for x, |x + 1| + |x| > 3.


If |x + 3| ≥ 10, then ______.


If `1/(x - 2) < 0`, then x ______ 2.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


If –3x + 17 < –13, then ______.


If x is a real number and |x| < 3, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If |x + 2| ≤ 9, then ______.


If – 4x ≥ 12, then x ______ – 3.


If `2/(x + 2) > 0`, then x  ______ –2.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×