Advertisements
Advertisements
प्रश्न
If `1/(x - 2) < 0`, then x ______ 2.
उत्तर
If `1/(x - 2) < 0`, then x < 2.
Explanation:
Because If `a/b < 0` and a > 0, then b < 0.
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ N
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{x - 1}{x + 3} > 2\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve `(x - 2)/(x + 5) > 2`.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
If x is a real number and |x| < 3, then ______.
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If `2/(x + 2) > 0`, then x ______ –2.