Advertisements
Advertisements
प्रश्न
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
उत्तर
\[\text{ As }, \frac{\left| x + 2 \right| - x}{x} < 2\]
\[ \Rightarrow \frac{\left| x + 2 \right| - x}{x} - 2 < 0\]
\[ \Rightarrow \frac{\left| x + 2 \right| - x - 2x}{x} < 0\]
\[ \Rightarrow \frac{\left| x + 2 \right| - 3x}{x} < 0\]
\[\text{ Case I: When } x \geq - 2, \left| x + 2 \right| = \left( x + 2 \right), \]
\[\frac{\left( x + 2 \right) - 3x}{x} < 0\]
\[ \Rightarrow \frac{2 - 2x}{x} < 0\]
\[ \Rightarrow \frac{- 2\left( x - 1 \right)}{x} < 0\]
\[ \Rightarrow \frac{x - 1}{x} > 0\]
\[ \Rightarrow \left( x - 1 > 0 \text{ and } x > 0 \right) or \left( x - 1 < 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x > 1 \text{ and } x > 0 \right) \text{ or } \left( x < 1 \text{ and} x < 0 \right)\]
\[ \Rightarrow x > 1 \text{ or } x < 0\]
\[ \Rightarrow x \in [ - 2, 0) \cup \left( 1, \infty \right)\]
\[\text{ Case II }: \text{ When }x \leq - 2, \left| x + 2 \right| = - \left( x + 2 \right), \]
\[\frac{- \left( x + 2 \right) - 3x}{x} < 0\]
\[ \Rightarrow \frac{- x - 2 - 3x}{x} < 0\]
\[ \Rightarrow \frac{- 4x - 2}{x} < 0\]
\[ \Rightarrow \frac{- 2\left( 2x + 1 \right)}{x} < 0\]
\[ \Rightarrow \frac{2x + 1}{x} > 0\]
\[ \Rightarrow \left( 2x + 1 > 0 \text{ and } x > 0 \right) \text{ or } \left( 2x + 1 < 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x > \frac{- 1}{2} and x > 0 \right) \text{ or } \left( x < \frac{- 1}{2} \text{ and } x < 0 \right)\]
\[ \Rightarrow x > 0 or x < \frac{- 1}{2}\]
\[ \Rightarrow x \in ( - \infty , - 2] \cup \left( 0, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in [ - 2, 0) \cup \left( 1, \infty \right) \cup ( - \infty , - 2] \cup \left( 0, \infty \right)\]
\[ \therefore x \in \left( - \infty , 0 \right) \cup \left( 1, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ Z
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ R
Solve: −4x > 30, when x ∈ Z
Solve: −4x > 30, when x ∈ N
x + 5 > 4x − 10
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve |3 – 4x| ≥ 9.
Solve for x, |x + 1| + |x| > 3.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If |x + 3| ≥ 10, then ______.
If –x ≤ –4, then 2x ______ 8.
If `1/(x - 2) < 0`, then x ______ 2.
A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added?
If x < 5, then ______.
Given that x, y and b are real numbers and x < y, b < 0, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)