Advertisements
Advertisements
प्रश्न
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
उत्तर
\[\text{ As }, \frac{\left| x + 2 \right| - x}{x} < 2\]
\[ \Rightarrow \frac{\left| x + 2 \right| - x}{x} - 2 < 0\]
\[ \Rightarrow \frac{\left| x + 2 \right| - x - 2x}{x} < 0\]
\[ \Rightarrow \frac{\left| x + 2 \right| - 3x}{x} < 0\]
\[\text{ Case I: When } x \geq - 2, \left| x + 2 \right| = \left( x + 2 \right), \]
\[\frac{\left( x + 2 \right) - 3x}{x} < 0\]
\[ \Rightarrow \frac{2 - 2x}{x} < 0\]
\[ \Rightarrow \frac{- 2\left( x - 1 \right)}{x} < 0\]
\[ \Rightarrow \frac{x - 1}{x} > 0\]
\[ \Rightarrow \left( x - 1 > 0 \text{ and } x > 0 \right) or \left( x - 1 < 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x > 1 \text{ and } x > 0 \right) \text{ or } \left( x < 1 \text{ and} x < 0 \right)\]
\[ \Rightarrow x > 1 \text{ or } x < 0\]
\[ \Rightarrow x \in [ - 2, 0) \cup \left( 1, \infty \right)\]
\[\text{ Case II }: \text{ When }x \leq - 2, \left| x + 2 \right| = - \left( x + 2 \right), \]
\[\frac{- \left( x + 2 \right) - 3x}{x} < 0\]
\[ \Rightarrow \frac{- x - 2 - 3x}{x} < 0\]
\[ \Rightarrow \frac{- 4x - 2}{x} < 0\]
\[ \Rightarrow \frac{- 2\left( 2x + 1 \right)}{x} < 0\]
\[ \Rightarrow \frac{2x + 1}{x} > 0\]
\[ \Rightarrow \left( 2x + 1 > 0 \text{ and } x > 0 \right) \text{ or } \left( 2x + 1 < 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x > \frac{- 1}{2} and x > 0 \right) \text{ or } \left( x < \frac{- 1}{2} \text{ and } x < 0 \right)\]
\[ \Rightarrow x > 0 or x < \frac{- 1}{2}\]
\[ \Rightarrow x \in ( - \infty , - 2] \cup \left( 0, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in [ - 2, 0) \cup \left( 1, \infty \right) \cup ( - \infty , - 2] \cup \left( 0, \infty \right)\]
\[ \therefore x \in \left( - \infty , 0 \right) \cup \left( 1, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: 12x < 50, when x ∈ Z
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ R
3x − 7 > x + 1
−(x − 3) + 4 < 5 − 2x
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{2x - 3}{3x - 7} > 0\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve |3 – 4x| ≥ 9.
Solve 1 ≤ |x – 2| ≤ 3.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
If |x + 3| ≥ 10, then ______.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?
If x < 5, then ______.