Advertisements
Advertisements
प्रश्न
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
उत्तर
\[\text{ As }, \left| \frac{2x - 1}{x - 1} \right| > 2\]
\[ \Rightarrow \frac{2x - 1}{x - 1} < - 2 \text{ or } \frac{2x - 1}{x - 1} > 2 \left( \text{ As }, \left| x \right| > 2 \Rightarrow x < - 2 \text{ or } x > 2 \right)\]
\[ \Rightarrow \frac{2x - 1}{x - 1} + 2 < 0 \text{ or } \frac{2x - 1}{x - 1} - 2 > 0\]
\[ \Rightarrow \frac{2x - 1 + 2x - 2}{x - 1} < 0 \text{ or } \frac{2x - 1 - 2x + 2}{x - 1} > 0\]
\[ \Rightarrow \frac{4x - 3}{x - 1} < 0 \text{ or } \frac{1}{x - 1} > 0\]
\[ \Rightarrow \frac{4x - 3}{x - 1} < 0 \text{ or } x - 1 > 0\]
\[ \Rightarrow \left[ \left( 4x - 3 > 0 \text{ and } x - 1 < 0 \right) or \left( 4x - 2 < 0 \text{ and } x - 1 > 0 \right) \right] or \left[ x - 1 > 0 \right]\]
\[ \Rightarrow \left[ \left( x > \frac{3}{4} \text{ and } x < 1 \right) or \left( x < \frac{3}{4} \text{ and } x > 1 \right) \right] or \left[ x > 1 \right]\]
\[ \Rightarrow \left[ \left( \frac{3}{4} < x < 1 \right) \text{ or } \phi \right] or \left[ x > 1 \right]\]
\[ \Rightarrow \left[ \frac{3}{4} < x < 1 \right] \text{ or } \left[ x < 1 \right]\]
\[ \Rightarrow \frac{3}{4} < x < 1 \text{ or } x > 1\]
\[ \therefore x \in \left( \frac{3}{4}, 1 \right) \cup \left( 1, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ R
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ R
3x − 7 > x + 1
3x + 9 ≥ −x + 19
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Solve |3 – 4x| ≥ 9.
Solve 1 ≤ |x – 2| ≤ 3.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
If x < 5, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.
If p > 0 and q < 0, then p – q ______ p.