Advertisements
Advertisements
प्रश्न
Solve: −4x > 30, when x ∈ R
उत्तर
\[- 4x > 30\]
\[ \Rightarrow x < - \frac{30}{4} (\text{ Dividing both the sides by } - 4)\]
\[ \Rightarrow x < - \frac{15}{2}\]
\[(i) x \in R\]
\[\text{ Then, the solution of the given inequation is } \left( - \infty , - \frac{15}{2} \right) . \]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: 12x < 50, when x ∈ Z
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x + 8}{4 - x} < 2\]
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve 1 ≤ |x – 2| ≤ 3.
If x ≥ –3, then x + 5 ______ 2.
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If –3x + 17 < –13, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If x < –5 and x > 2, then x ∈ (– 5, 2)
If – 4x ≥ 12, then x ______ – 3.
If `2/(x + 2) > 0`, then x ______ –2.