Advertisements
Advertisements
प्रश्न
If –3x + 17 < –13, then ______.
पर्याय
x ∈ (10, ∞)
x ∈ [10, ∞)
x ∈ (–∞, 10]
x ∈ [–10, 10)
उत्तर
If –3x + 17 < –13, then x ∈ (10, ∞).
Explanation:
Given that –3x + 17 < –13
⇒ –3x < –17 – 13
⇒ –3x < –30
⇒ 3x > 30
⇒ x > 10
⇒ x ∈ (10, ∞)
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ N
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{4x + 3}{2x - 5} < 6\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
If `|x - 2|/(x - 2) ≥ 0`, then ______.
If x ≥ –3, then x + 5 ______ 2.
If –x ≤ –4, then 2x ______ 8.
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?
A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added?
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.
If x > y and z < 0, then – xz ______ – yz.