Advertisements
Advertisements
प्रश्न
If x > y and z < 0, then – xz ______ – yz.
उत्तर
If x > y and z < 0, then – xz ______ – yz.
Explanation:
If x > y and z < 0, then
xz < yz
⇒ – xz > – yz
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
3x − 7 > x + 1
x + 5 > 4x − 10
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
−(x − 3) + 4 < 5 − 2x
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If a < b and c < 0, then `a/c` ______ `b/c`.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If |x − 1| > 5, then ______.
If `(-3)/4 x ≤ – 3`, then x ______ 4.