Advertisements
Advertisements
प्रश्न
\[\frac{5x - 6}{x + 6} < 1\]
उत्तर
\[\frac{5x - 6}{x + 6} < 1\]
\[ \Rightarrow \frac{5x - 6}{x + 6} - 1 < 0\]
\[ \Rightarrow \frac{5x - 6 - x - 6}{x + 6} < 0\]
\[ \Rightarrow \frac{4x - 12}{x + 6} < 0\]
\[ \Rightarrow \frac{x - 3}{x + 6} < 0\]
\[\therefore x \in \left( - 6, 3 \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ Z
3x + 9 ≥ −x + 19
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{1}{x - 1} \leq 2\]
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
If `|x - 2|/(x - 2) ≥ 0`, then ______.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If |x + 3| ≥ 10, then ______.
If –x ≤ –4, then 2x ______ 8.
If a < b and c < 0, then `a/c` ______ `b/c`.
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If x < 5, then ______.
x and b are real numbers. If b > 0 and |x| > b, then ______.
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If x < –5 and x > 2, then x ∈ (– 5, 2)