Advertisements
Advertisements
प्रश्न
If |x + 3| ≥ 10, then ______.
पर्याय
x ∈ (–13, 7]
x ∈ (–13, 7]
x ∈ (–∞, –13] ∪ [7, ∞)
x ∈ [–∞, –13] ∪ [7, ∞)
उत्तर
If |x + 3| ≥ 10, then x ∈ (–∞, –13] ∪ [7, ∞).
Explanation:
x ∈ (–∞, –13] ∪ [7, ∞) is the correct choice. Since |x + 3| ≥ 10.
⇒ x + 3 ≤ –10 or x + 3 ≥ 10
⇒ x ≤ –13 or x ≥ 7
⇒ x ∈ (–∞, –13] ∪ [7, ∞)
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ Z
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{3}{x - 2} < 1\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If –x ≤ –4, then 2x ______ 8.
If x < 5, then ______.
If –3x + 17 < –13, then ______.
If x is a real number and |x| < 3, then ______.
If |x − 1| > 5, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If p > 0 and q < 0, then p – q ______ p.
If – 2x + 1 ≥ 9, then x ______ – 4.