Advertisements
Advertisements
प्रश्न
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
उत्तर
\[\text{ As }, \left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
\[ \Rightarrow - \frac{5}{12} \leq \frac{3x - 4}{2} \leq \frac{5}{12} \left( \text{ As }, \left| x \right| \leq a \Rightarrow - a \leq x \leq a \right)\]
\[ \Rightarrow - \frac{5}{6} \leq 3x - 4 \leq \frac{5}{6}\]
\[ \Rightarrow - \frac{5}{6} + 4 \leq 3x \leq \frac{5}{6} + 4\]
\[ \Rightarrow \frac{- 5 + 24}{6} \leq 3x \leq \frac{5 + 24}{6}\]
\[ \Rightarrow \frac{19}{6} \leq 3x \leq \frac{29}{6}\]
\[ \Rightarrow \frac{19}{18} \leq x \leq \frac{29}{18}\]
\[ \therefore x \in \left[ \frac{19}{18}, \frac{29}{18} \right]\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ Z
3x − 7 > x + 1
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{7x - 5}{8x + 3} > 4\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
If `|x - 2|/(x - 2) ≥ 0`, then ______.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If x ≥ –3, then x + 5 ______ 2.
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
If |x − 1| > 5, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If `2/(x + 2) > 0`, then x ______ –2.
If x > – 5, then 4x ______ –20.
If – 2x + 1 ≥ 9, then x ______ – 4.