मराठी

Solve ∣ ∣ ∣ 3 X − 4 2 ∣ ∣ ∣ ≤ 5 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 

उत्तर

\[\text{ As }, \left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
\[ \Rightarrow - \frac{5}{12} \leq \frac{3x - 4}{2} \leq \frac{5}{12} \left( \text{ As }, \left| x \right| \leq a \Rightarrow - a \leq x \leq a \right)\]
\[ \Rightarrow - \frac{5}{6} \leq 3x - 4 \leq \frac{5}{6}\]
\[ \Rightarrow - \frac{5}{6} + 4 \leq 3x \leq \frac{5}{6} + 4\]
\[ \Rightarrow \frac{- 5 + 24}{6} \leq 3x \leq \frac{5 + 24}{6}\]
\[ \Rightarrow \frac{19}{6} \leq 3x \leq \frac{29}{6}\]
\[ \Rightarrow \frac{19}{18} \leq x \leq \frac{29}{18}\]
\[ \therefore x \in \left[ \frac{19}{18}, \frac{29}{18} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.3 | Q 3 | पृष्ठ २२

संबंधित प्रश्‍न

Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ Z 


3x − 7 > x + 1 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[x - 2 \leq \frac{5x + 8}{3}\] 


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{1}{x - 1} \leq 2\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{7x - 5}{8x + 3} > 4\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


If `|x - 2|/(x - 2) ≥ 0`, then ______.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If x ≥ –3, then x + 5 ______ 2.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


If |x − 1| > 5, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If `2/(x + 2) > 0`, then x  ______ –2.


If x > – 5, then 4x ______ –20.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×