मराठी

Solve Each of the Following System of Equations in R. 4 X + 1 ≤ 3 ≤ 6 X + 1 , X > 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]

उत्तर

\[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
\[ \Rightarrow \frac{4}{x + 1} \leq 3 and 3 \leq \frac{6}{x + 1}\]
\[\text{ Now }, \]
\[\frac{4}{x + 1} \leq 3\]
\[ \Rightarrow \frac{4}{x + 1} - 3 \leq 0 \]
\[ \Rightarrow \frac{4 - 3x - 3}{x + 1} \leq 0 \]
\[ \Rightarrow \frac{1 - 3x}{x + 1} \leq 0\]
\[ \Rightarrow \frac{3x - 1}{x + 1} \geq 0\]
\[ \Rightarrow x \in \left( - \infty , - 1 \right) \cup [\frac{1}{3}, \infty )\]

Thus, the solution set of the inequation is \[\left( - \infty , - 1 \right) \cup [\frac{1}{3}, \infty )\]

\[\text{ And } \]
\[\frac{6}{x + 1} \geq 3\]
\[ \Rightarrow \frac{6}{x + 1} - 3 \geq 0\]
\[ \Rightarrow \frac{6 - 3x - 3}{x + 1} \geq 0\]
\[ \Rightarrow \frac{3 - 3x}{x + 1} \geq 0\]
\[ \Rightarrow \frac{3x - 3}{x + 1} \leq 0\]
\[ \Rightarrow x \in ( - 1, 1]\] 

Thus, the solution set of the inequation is \[( - 1, 1]\] 

The common values of x in both the inequation is \[\left[ \frac{1}{3}, 1 \right]\] 

Hence, the solution set of both the inequation is \[\left[ \frac{1}{3}, 1 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.2 | Q 21 | पृष्ठ १६

संबंधित प्रश्‍न

Solve: 12x < 50, when  x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ Z 


x + 5 > 4x − 10 


3x + 9 ≥ −x + 19 


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{3}{x - 2} < 1\]


\[\frac{1}{x - 1} \leq 2\]


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve 1 ≤ |x – 2| ≤ 3.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If x ≥ –3, then x + 5 ______ 2.


If –x ≤ –4, then 2x ______ 8.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If x is a real number and |x| < 3, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If |x − 1| > 5, then ______.


If |x + 2| ≤ 9, then ______.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If `2/(x + 2) > 0`, then x  ______ –2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×