Advertisements
Advertisements
प्रश्न
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
उत्तर
\[5x - 1 < 24\]
\[ \Rightarrow 5x < 24 + 1\]
\[ \Rightarrow x < 5 \]
\[ \Rightarrow x \in \left( - \infty , 5 \right) . . . (i)\]
\[\text{ Also }, 5x + 1 > - 24\]
\[ \Rightarrow 5x > - 24 - 1\]
\[ \Rightarrow x > - 5\]
\[ \Rightarrow x \in ( - 5, \infty ) . . . (ii)\]
\[\text{ Hence, the solution of the given set of inequalities is the intersection of } (i) \text{ and } (ii) . \]
\[\left( - \infty , 5 \right) \cap \left( - 5, \infty \right) = \left( - 5, 5 \right)\]
\[\text{ Thus, the solution of the given set of inequalities is } \left( - 5, 5 \right) .\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ N
3x − 7 > x + 1
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[x - 2 \leq \frac{5x + 8}{3}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve `(x - 2)/(x + 5) > 2`.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
If x is a real number and |x| < 3, then ______.
x and b are real numbers. If b > 0 and |x| > b, then ______.
If |x + 2| ≤ 9, then ______.
If – 4x ≥ 12, then x ______ – 3.
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.
If – 2x + 1 ≥ 9, then x ______ – 4.