मराठी

Solve Each of the Following System of Equations in R. 5x − 1 < 24, 5x + 1 > −24 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 

उत्तर

\[5x - 1 < 24\]

\[ \Rightarrow 5x < 24 + 1\]

\[ \Rightarrow x < 5 \]

\[ \Rightarrow x \in \left( - \infty , 5 \right) . . . (i)\]

\[\text{ Also }, 5x + 1 > - 24\]

\[ \Rightarrow 5x > - 24 - 1\]

\[ \Rightarrow x > - 5\]

\[ \Rightarrow x \in ( - 5, \infty ) . . . (ii)\]

\[\text{ Hence, the solution of the given set of inequalities is the intersection of } (i) \text{ and } (ii) . \]

\[\left( - \infty , 5 \right) \cap \left( - 5, \infty \right) = \left( - 5, 5 \right)\]

\[\text{ Thus, the solution of the given set of inequalities is } \left( - 5, 5 \right) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.2 | Q 8 | पृष्ठ १५

संबंधित प्रश्‍न

Solve: 12x < 50, when  x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ N 


3x − 7 > x + 1 


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve `(x - 2)/(x + 5) > 2`.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


If x is a real number and |x| < 3, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If |x + 2| ≤ 9, then ______.


If – 4x ≥ 12, then x ______ – 3.


If x > y and z < 0, then – xz ______ – yz.


If p > 0 and q < 0, then p – q ______ p.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×