Advertisements
Advertisements
प्रश्न
If x is a real number and |x| < 3, then ______.
पर्याय
x ≥ 3
– 3 < x < 3
x ≤ – 3
– 3 ≤ x ≤ 3
उत्तर
If x is a real number and |x| < 3, then – 3 < x < 3.
Explanation:
Given that |x| < 3
⇒ –3 < x < 3 .....[∵ |x| < a ⇒ –a < x < a]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ N
3x − 7 > x + 1
3x + 9 ≥ −x + 19
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
If `|x - 2|/(x - 2) ≥ 0`, then ______.
If |x + 3| ≥ 10, then ______.
If –x ≤ –4, then 2x ______ 8.
If a < b and c < 0, then `a/c` ______ `b/c`.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
If –3x + 17 < –13, then ______.
x and b are real numbers. If b > 0 and |x| > b, then ______.
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If `2/(x + 2) > 0`, then x ______ –2.
If x > – 5, then 4x ______ –20.