मराठी

Solve Each of the Following System of Equations in R. 2 X − 3 4 − 2 ≥ 4 X 3 − 6 , 2 ( 2 X + 3 ) < 6 ( X − 2 ) + 10 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]

उत्तर

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6\]
\[ \Rightarrow \frac{2x - 3}{4} - \frac{4x}{3} \geq - 6 + 2\]
\[ \Rightarrow \frac{3\left( 2x - 3 \right) - 16x}{12} \geq - 4\]
\[ \Rightarrow 6x - 9 - 16x \geq - 48\]
\[ \Rightarrow - 10x \geq - 39\]
\[ \Rightarrow 10x \leq 39 \left[ \text{ Multiplying both sides by } - 1 \right]\]
\[ \Rightarrow x \leq \frac{39}{10}\]
\[ \Rightarrow x \in ( - \infty , \frac{39}{10}] . . . (i)\]
\[\text{ Also }, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
\[ \Rightarrow 4x + 6 < 6x - 12 + 10\]
\[ \Rightarrow 4x + 6 < 6x - 2\]
\[ \Rightarrow 6x - 2 > 4x + 6\]
\[ \Rightarrow 6x - 4x > 6 + 2\]
\[ \Rightarrow 2x > 8\]
\[ \Rightarrow x > 4 \]
\[ \Rightarrow x \in \left( 4, \infty \right) . . . (ii)\]
\[\text{ Hence, thesolution of the given set of inequalities is theintersection of } (i) \text{ and } (ii), \]
\[( - \infty , \frac{39}{10}] \cap \left( 4, \infty \right) = \varnothing \]
\[ \text{ which is an empty set } . \]
\[\text{ Thus, there is no solution of the given set of inequations } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.2 | Q 15 | पृष्ठ १५

संबंधित प्रश्‍न

Solve: 12x < 50, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ Z 


3x − 7 > x + 1 


x + 5 > 4x − 10 


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{1}{x - 1} \leq 2\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit? 


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If `1/(x - 2) < 0`, then x ______ 2.


If a < b and c < 0, then `a/c` ______ `b/c`.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If x is a real number and |x| < 3, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If – 4x ≥ 12, then x ______ – 3.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×