मराठी

Mark the Correct Alternative in Each of the Following: If X and a Are Real Numbers Such that a > 0 and \\Left| X \Right|\] > A, Then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 

पर्याय

  • x\[\in\]\[\in\](\[-\]a, \[\infty\])

  • (b) x\[\in\][\[-\]\[\infty\]a]

  • (c) x\[\in\](\[-\]aa)

  • (d) x\[\in\](\[-\]\[\infty\]\[-\]a) \[\cup\](a, \[\infty\])

MCQ

उत्तर

If and are real numbers such that a \[>\]0.\[\left| x \right|\] \[>\]a

\[\Rightarrow x > a \text{ or } x < - a\]
\[ \Rightarrow x \in \left( - \infty , - a \right) \cup \left( a, \infty \right)\]

Hence, the correct option is (d).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.8 | Q 5 | पृष्ठ ३२

संबंधित प्रश्‍न

Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ R 


3x + 9 ≥ −x + 19 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{1}{x - 1} \leq 2\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Solve |3 – 4x| ≥ 9.


Solve 1 ≤ |x – 2| ≤ 3.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If a < b and c < 0, then `a/c` ______ `b/c`.


If p > 0 and q < 0, then p + q ______ p.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


If x < 5, then ______.


If x is a real number and |x| < 3, then ______.


If |x − 1| > 5, then ______.


If |x + 2| ≤ 9, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If – 4x ≥ 12, then x ______ – 3.


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×