Advertisements
Advertisements
प्रश्न
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
पर्याय
x\[\in\]\[\in\](\[-\]a, \[\infty\])
(b) x\[\in\][\[-\]\[\infty\]a]
(c) x\[\in\](\[-\]a, a)
(d) x\[\in\](\[-\]\[\infty\]\[-\]a) \[\cup\](a, \[\infty\])
उत्तर
If x and a are real numbers such that a \[>\]0.\[\left| x \right|\] \[>\]a
\[\Rightarrow x > a \text{ or } x < - a\]
\[ \Rightarrow x \in \left( - \infty , - a \right) \cup \left( a, \infty \right)\]
Hence, the correct option is (d).
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ R
3x + 9 ≥ −x + 19
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
−(x − 3) + 4 < 5 − 2x
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{1}{x - 1} \leq 2\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Solve |3 – 4x| ≥ 9.
Solve 1 ≤ |x – 2| ≤ 3.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If a < b and c < 0, then `a/c` ______ `b/c`.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
If x < 5, then ______.
If x is a real number and |x| < 3, then ______.
If |x − 1| > 5, then ______.
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If – 4x ≥ 12, then x ______ – 3.
If p > 0 and q < 0, then p – q ______ p.