Advertisements
Advertisements
प्रश्न
Solve: 4x − 2 < 8, when x ∈ R
उत्तर
\[\text{ We have }, 4x - 2 < 8\]
\[ \Rightarrow 4x < 8 + 2 (\text{ Transposing } - 2 \text{ to the RHS })\]
\[ \Rightarrow 4x < 10\]
\[ \Rightarrow x < \frac{10}{4} (\text{ Dividing both the sides by } 4)\]
\[ \Rightarrow x < \frac{5}{2}\]
\[ x \in R\]
\[\text{ Then, the solution of the given inequation is } \left( - \infty , \frac{5}{2} \right) . \]
APPEARS IN
संबंधित प्रश्न
3x + 9 ≥ −x + 19
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If x < 5, then ______.
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If x is a real number and |x| < 3, then ______.
If |x + 2| ≤ 9, then ______.
If `2/(x + 2) > 0`, then x ______ –2.
If x > y and z < 0, then – xz ______ – yz.
If p > 0 and q < 0, then p – q ______ p.