मराठी

Solve Each of the Following System of Equations in R. 2 (X − 6) < 3x − 7, 11 − 2x < 6 − X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 

थोडक्यात उत्तर

उत्तर

\[2\left( x - 6 \right) < 3x - 7\]
\[ \Rightarrow 2x - 12 < 3x - 7\]
\[ \Rightarrow 3x - 7 > 2x - 12\]
\[ \Rightarrow 3x - 2x > - 12 + 7\]
\[ \Rightarrow x > - 5\]
\[ \Rightarrow x \in \left( - 5, \infty \right) . . . (i)\]
\[\text{ Also }, 11 - 2x < 6 - x\]
\[ \Rightarrow 6 - x > 11 - 2x\]
\[ \Rightarrow 2x - x > 11 - 6\]
\[ \Rightarrow x > 5\]
\[ \Rightarrow x \in \left( 5, \infty \right) . . . (ii)\]
\[\text{Hence, the solution of the given inequation is the intersection of } (i) \text{ and } (ii) . \]
\[\left( - 5, \infty \right) \cap \left( 5, \infty \right) = \left( 5, \infty \right)\]
\[\text{ Hence, the solution of the given inequation is } \left( 5, \infty \right) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.2 | Q 13 | पृष्ठ १५

संबंधित प्रश्‍न

Solve: 12x < 50, when x ∈ R 


Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when  x ∈ R 


Solve: −4x > 30, when x ∈ N 


3x − 7 > x + 1 


−(x − 3) + 4 < 5 − 2x


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{1}{x - 1} \leq 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve 1 ≤ |x – 2| ≤ 3.


If x ≥ –3, then x + 5 ______ 2.


If –x ≤ –4, then 2x ______ 8.


If `1/(x - 2) < 0`, then x ______ 2.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


If x < 5, then ______.


State which of the following statement is True or False.

If xy < 0, then x < 0 and y < 0


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x > y and z < 0, then – xz ______ – yz.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×