Advertisements
Advertisements
प्रश्न
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
उत्तर
\[\text{ As }, \frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
\[\text{ Case I: When } x \geq 2, \left| x - 2 \right| = x - 2, \]
\[\frac{x - 2 - 1}{x - 2 - 2} \leq 0\]
\[ \Rightarrow \frac{x - 3}{x - 4} \leq 0\]
\[ \Rightarrow \left( x - 3 \leq 0 \text{ and } x - 4 > 0 \right) \text{ or } \left( x - 3 \geq 0 \text{ and } x - 4 < 0 \right)\]
\[ \Rightarrow \left( x \leq 3 \text{ and } x > 4 \right) \text{ or } \left( x \geq 3 \text{ and } x < 4 \right)\]
\[ \Rightarrow \phi \text{ or } \left( 3 \leq x < 4 \right)\]
\[ \Rightarrow 3 \leq x < 4\]
\[\text{ So }, x \in [3, 4)\]
\[\text{ Case II: When } x \leq 2, \left| x - 2 \right| = 2 - x, \]
\[\frac{2 - x - 1}{2 - x - 2} \leq 0\]
\[ \Rightarrow \frac{1 - x}{- x} \leq 0\]
\[ \Rightarrow \frac{x - 1}{x} \leq 0\]
\[ \Rightarrow \left( x - 1 \leq 0 \text{ and } x > 0 \right) or \left( x - 1 \geq 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x \leq 1 \text{ and }x > 0 \right) \text{ or } \left( x \geq 1 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( 0 < x \leq 1 \right) \text{ or } \phi\]
\[ \Rightarrow 0 < x \leq 1\]
\[\text{ So }, x \in (0, 1]\]
\[ \therefore \text{ From both the cases, we get }\]
\[x \in (0, 1] \cup [3, 4)\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: −4x > 30, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ Z
x + 5 > 4x − 10
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve |3 – 4x| ≥ 9.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
If –3x + 17 < –13, then ______.
If |x − 1| > 5, then ______.
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If x > – 5, then 4x ______ –20.
If – 2x + 1 ≥ 9, then x ______ – 4.