Advertisements
Advertisements
प्रश्न
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
उत्तर
\[\text{ As }, \frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
\[\text{ Case I: When } x \geq 2, \left| x - 2 \right| = x - 2, \]
\[\frac{x - 2 - 1}{x - 2 - 2} \leq 0\]
\[ \Rightarrow \frac{x - 3}{x - 4} \leq 0\]
\[ \Rightarrow \left( x - 3 \leq 0 \text{ and } x - 4 > 0 \right) \text{ or } \left( x - 3 \geq 0 \text{ and } x - 4 < 0 \right)\]
\[ \Rightarrow \left( x \leq 3 \text{ and } x > 4 \right) \text{ or } \left( x \geq 3 \text{ and } x < 4 \right)\]
\[ \Rightarrow \phi \text{ or } \left( 3 \leq x < 4 \right)\]
\[ \Rightarrow 3 \leq x < 4\]
\[\text{ So }, x \in [3, 4)\]
\[\text{ Case II: When } x \leq 2, \left| x - 2 \right| = 2 - x, \]
\[\frac{2 - x - 1}{2 - x - 2} \leq 0\]
\[ \Rightarrow \frac{1 - x}{- x} \leq 0\]
\[ \Rightarrow \frac{x - 1}{x} \leq 0\]
\[ \Rightarrow \left( x - 1 \leq 0 \text{ and } x > 0 \right) or \left( x - 1 \geq 0 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( x \leq 1 \text{ and }x > 0 \right) \text{ or } \left( x \geq 1 \text{ and } x < 0 \right)\]
\[ \Rightarrow \left( 0 < x \leq 1 \right) \text{ or } \phi\]
\[ \Rightarrow 0 < x \leq 1\]
\[\text{ So }, x \in (0, 1]\]
\[ \therefore \text{ From both the cases, we get }\]
\[x \in (0, 1] \cup [3, 4)\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ R
−(x − 3) + 4 < 5 − 2x
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve `(x - 2)/(x + 5) > 2`.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
If |x + 2| ≤ 9, then ______.
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
If `(-3)/4 x ≤ – 3`, then x ______ 4.